藉ESL輔助設計之無線低侵入式植入生理信號監測系統 Wireless Low-invasive Implantable Systems for Physiological Signal Monitoring by Using ESL Design

> Advisor: 楊慶隆 (Dr. Chin-Lung Yang) Student: 陳盛豪 (Sheng-Hao Chen)

Rand

Receive Module (Rx) BBT Record

BT Long-tern

Transmitter Module (Tx)

無線整合系統及生醫應用實驗室 (WISBAL) Wireless Integrated Systems and Biomedical Applications Lab, National Cheng Kung University

ESL Design / Heterogeneous Integration Simulation

- Challenge:
 - 整合模擬,
 - Base Band的取捨是很困難的課題 [數位(1 KHz) vs RF(406 MHz)]
- Results:
 - ESL Design:
 - (S/W)以整合結果提早發現問題
 - 嘗試不同架構
 - 訂出系統規格
 - The Proposed Method
 - 精簡模擬時間的設計
 - 解頻 (ExeResolution)的設定
 - 基本功能(functional-based)驗證
 - 模組可分開操作(power gating)機制

Results of Teeth Antenna

- Two resonant modes: 364.5 ~ 357.5 MHz
- Detailed realistic human oral cavity environments are simulated

Practical Oral Measurement (with IRB protocol)

- Open Mouth: 314.4~376.5 MHz (BW=62.1 MHz)
- Closed Mouth: 290 ~ 347 MHz (BW= 57 MHz)

Comparison of Antenna Performance

Antennas	Volume (mm ³) with insulation	Area (mm ²)	Body Model	BW (MHz) (S ₁₁ < -10 dB)	Max Gain (dBi)
[1]	27x27x6=2754.0	459	2/3 Muscle	23	-35
[2]	22.5x22.5x5	506.3	Skin mimic gel	5.7	-26
[3]	$7.5^2 x \pi x 1.9 = 335.7$	353.3	Skin	30	-26
[4]	11.5 ² xπx24.72=1027 (including electronics and power supply)	415.3	Muscle	3.3	-29
[5]	17x17x18=5202.0	867	Muscle	225.5	-28.5
Type II	8 ² x11.5=736	128	Teeth	5	-26.7
Proposed	7x7x10.5=514.5 8x8x11.5=736(Cap)	245	Oral	11.5 57~62*	-3.8

• Type II: the smallest antenna in size in the literature (up to 2011)

• The proposed teeth antenna achieves wide bandwidth and high gain.

High Resolution Temperature Sampling

Sampling & Sensitivity

- Most implantable devices have limited resolutions
- In case of a tiny thermal senor (ΔR): 2.68 Ω (36 °C ~37.5 °C), < 0.5%
- Conventional voltage divider ($\Delta R => \Delta V$) << our proposed sampling
 - Required at least 0.05224 (= $\Delta V_m / \Delta R_{Temp}$) vs. Traditionally maximal 0.00144
 - Less sensitivity
 - Less dynamic range
- Proposed Single Stage High Sensitivity Sampling
 - Improve sensitivity and dynamic ranges (both tunable)
 - > Single biasing V_s setup.

Simplest Transmitter + Readout Integration Design with Acceptable Error Rates

References

- [1] P. Soontornpipit, C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antennas for communication with medical implants," *IEEE Trans. Microwave Theory Tech.*, vol. 52, no. 8, pp. 1944–1951, Aug. 2004.
- [2] T. Karacolak, A. Z. Hood, , and E. Topsakal, "Design of a Dual-Band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring," *IEEE Trans. Microwave Theory Tech.*, vol. 56, no. 4, pp. 1001–1008, 2008.
- [3] C. M. Lee, T. C. Yo, and C. H. Luo, "Compact Broadband Stacked Implantable Antenna for Biotelemetry with Medical Devices," *Proc. IEEE Wireless and Microwave Technology Conference* (WAMICOM 2006), Clearwater, FL, USA, 2006.
- [4] F. Merli, L. Bolomey, E. Meurville, and A. K. Skrivervik, "Implanted Antenna for Biomedical Applications," in Proc. *IEEE Antennas and Propagation Society International Symposium* (AP-S 2008), San Diego, USA, 2008.
- [5] J. Abadia, F. Merli, J.-F. Zurcher, J. R. Mosig, and A. K. Skrivervik, "3d-Spiral Small Antenna for Biomedical Transmission operating within the MICS band," *Proc. IEEE 3rd European Conference on Antennas and Propagation* (EUCAP 2009), Berlin, Germany, 2009.