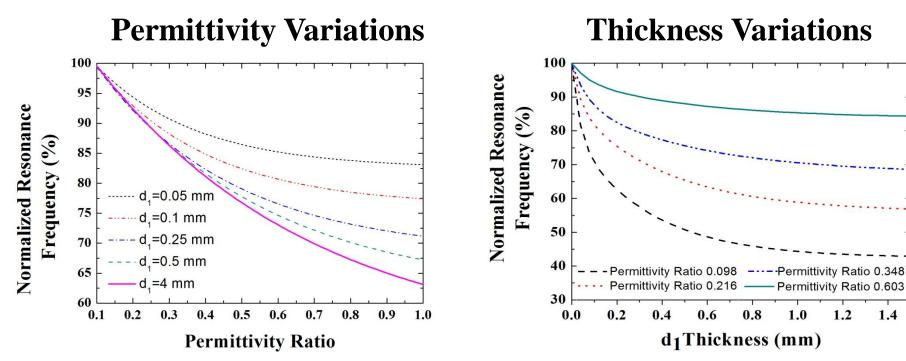

2013 WISBAL 實驗室成員回娘家 之經驗交流與回顧分享

博班研究精華


題目: Measurement Thickness or Permittivity Variations in Multilayered Dielectric Structures by Using Complementary Split Ring Resonator

CSRR detection multi-dielectric layer experimental setup

Side View

Analysis of the Sensor with Sample

- Behavior the CSRR sensors as a function of dielectric ratio($\varepsilon_1/\varepsilon_2$)
 - \blacktriangleright with d_2 =2mm, ε_2 =10.2 case.
- The shift resonance frequency of the sensors are normalized with respect to the resonance frequency when medium ε_1 is 1
 - ▶ for each d_1 =0.05 , 0.1 , 0.25 , 0.5 and 4, six cases

Behavior the CSRR sensors as a function of d₁ thickness

1.2

1.4

 \blacktriangleright with $d_1 + d_2 = 4$ mm

- The shift resonance frequency of the sensors are normalized with respect to the resonance frequency when $d_1=0$ of the medium
 - ➤ in four different permittivity ration 0.098, 0.216, 0.348, 0.603 cases

TABLE I. CSRR DIMENSION FOR NUMERICAL ANALYSIS t=g=0.2mm

	Case A	Case B	Case C	Case D	Case E
a(mm)	3.5	6	13	6	6
s (mm)	0.4	0.4	0.4	0.2	0.7
$f_o(\text{GHz})$	3.83	1.65	0.69	1.77	2.04

TABLE II.PERMITTIVITY RESOLUTION ANALYSIS $d_1 + d_2 = 4$ mm, t=g=0.2mm, $\varepsilon_2 = 10.2$, $\Delta \varepsilon_1 = 0.01$,

<i>d</i> ₁ (mm)	0.25			1.5		
\mathcal{E}_1	2.2	3.55	6.15	2.2	3.55	6.15
Case A (%)	0.035	0.019	0.010	0.063	0.047	0.031
Case B (%)	0.026	0.014	0.007	0.059	0.043	0.028
Case C (%)	0.022	0.012	0.006	0.057	0.040	0.026
Case D (%)	0.030	0.016	0.009	0.060	0.045	0.030
Case E (%)	0.026	0.014	0.007	0.059	0.043	0.028

TABLE III. THICKNESS RESOLUTION ANALYSIS $d_1 + d_2 = 4$ mm, t=g=0.2mm, $\varepsilon_2 = 10.2$, $\Delta d_1 = 0.01$

$arepsilon_1$	3.55			6.15		
d_1 (mm)	0.05	0.25	1.5	0.05	0.25	1.5
Case A (%)	0.875	0.295	0.024	0.623	0.186	0.018
Case B (%)	0.652	0.288	0.028	0.451	0.179	0.022
Case C (%)	0.637	0.238	0.051	0.387	0.169	0.023
Case D (%)	0.711	0.283	0.026	0.499	0.186	0.022
Case E (%)	0.613	0.276	0.037	0.368	0.169	0.025

Conclusion

- A rectangular CSRR structure is etched out on the ground plane of a microstrip line as a sensor to measure thickness and dielectric of multi-layers was designed, fabricated and tested.
 - The sensor is based on the shift in the minimum transmission coefficient of the stop-band filter as a function
 - The optimized sensor design can provide better sensitivity in two thin cognate permittivity coincident layer.
- And the CSRR provide effective sensing and is easy integrated in microwave circuits